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The algebraic formalism for the description of valence states of atoms and their interconversions
is elaborated. It offers a possibility to construct and trace mechanistic paths of chemical reac-
tions, the problem of which is of great importance in computer-assisted organic syntheses. Its
systematic application gives exhaustive lists of possible mechanistic paths, and furthermore,
very efficient tool to classify chemical reactions and look for their common features.

In construction of an adequate mathematical model of organic chemistry which
covers whole its diversity and complexity on microscopic level (e.g. the dynamical
chemical phenomena are interpreted by the interconversions of valence states
of atoms), an indispensable role play those formal tools that are representing the
electronic valence states of atoms and their permissible changes. Chemical reactions
between educts may be simply described via the interconversions of valence states
of a few atoms which form the so-called reaction sites unambiguously determined
for a given type of chemical process. The purpose of the present communication
is to suggest both simple and efficient algebraic approach to formalize the concept
of valence states of atoms and their interconversions. We give an exhaustive list
of all possible valence states of atoms with nd* orbitals; the valence states of atoms
of an actual element form only a subset of this list. We say that two valence states
are neighbouring if there exists such an elementary ‘““operation’ (physically realized
by a transfer of an electron) converting a first valence state in another one. Then
a distance between two valence states is determined as a number of these elementary
steps which converse an initial valence state in a final state. Moreover, we demon-
strate that the concept of chemical distance between two molecules (that are mutually
related via a chemical transformation) is immediately interpreted by the distances
of valence states between proper atoms taken from the initial and final molecular

* Part VI in the series Mathematical Model of Organic Chemistry; Part V; This Journal 49,
1098 (1984).
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systems. The present approach allows to formulate simple combinatorial algorithms
to enumerate (and simultaneously construct) all the possible products for a given
educt (or educts) if we know permissible valence states of atoms from the specified
reaction site.

Valence States of Atoms

In chemistry the valence state of an arbitrary atom belonging to a molecular system is,
in general, described by an ordered 4-tuple composed of non-negative integers!2:!!
(which is called the vector of valence state, VVS),

v = (v, Uy, 03, 04) (1)

where the individual entries have the following simple meaning:

v; = number of free (lone or odd) electrons,
v, = number of single bonds,

v; = number of double bonds,

v, = number of triple bonds.

For instance, the valence state of an atom —)_(< is determined by v = (2,1,2,0).
If we restrict ourselves to study only the chemistry of elements with at most nd*
electrons in valence sphere (i.e. inclusive of the so-called over-octet chemistry),
the non-negative entries of a VVS should be restricted by

vl+02+2v3+3v4§8 (2)

which is, roughly speaking, an area of standard chemistry. The relation (2) specifies
a subset of 4-dimensional space, its elements are composed of non-negative integers
restricted by the inequality (2). In order to visualize this subset, the entry v, (i.e.
the number of triple bonds) will be substituted by its two permissible values, 0 and 1,
respectively. We get

vy + v, + 203 £ 8 (forv,"=0), (3a)
vy + v, + 203 £5 (forv, =1). (3p)

The geometric interpretation of both inequalities is presented in Fig. 1 and Fig. 2.
Enumerating all possible VVSs that are satisfying the relations (3a) and (3b) (i.e.
the possible valence states with none and one triple bond) we arrive at 129 permissible
VVSs. We enlarge this set by the following four VVSs: (0,9,0,0), (0,10,0,0), (0,11,0,0)
and (0,12,0,0), which correspond to rather scarce valence states known in the chemistry
of coordination compounds?; thus the total number of VVSs is 133 (Table I). This

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]



Mathematical Model of Organic Chemistry 1249

system is necessarilly open and accessible to new knowledge (over the nd* orbitals)
and closed for the rule (2) with respect to rules (3a), (3b).

For special bonding situations of some metals (Re, Te, Mo, W, Cr) the dimension
of the valence state vector can be extended to 5— 7 considering the existence of bonds
with multiplicity 4 — 6 between their atoms*. Operations remain the same as with va-
lence state vectors of the dimension 4.

Conversions of Valence States

In the course of a chemical reaction the valence states of some part of atoms (i.e
reaction sites) are converted. Let us assume that an initial valence state of an atom
$), v4?) is converted during the chemical reaction into a final valence

vV, = (U(ll)’ v(zl)’ V37 Uy
state vp = (v, v}, v, v{°). The conversion of v; into v; is unambiguously deter-

150275037 0y
mined by the so-called vector of conversion (VC) denoted by Av;_,,,

vi + Avi ¢ = vg, (4a)

Fic. 1

Geometric three-dimensional representation
of elementary conversions of valence states
of atoms for two cases: x4 = 0 and x4 = 1,
respectively. Elementary conversions as-
signed to the same VECs form parallel
lines; a x, = 0; b x, =1 n
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or
Av; ¢ = vi — v; = (Avy, Av,, Avy, Avy), (4b)

where Av; = v{¥ — (", for j = 1,2,3,4. The individual entries of Av,., have
the following meaning:

Av, = number of gained (Av; > 0) or lost (Av; < 0) free electrons,

Av, = number of formed (Av, > 0) or broken (Av, < 0) single bonds,
Avy = number of formed (Av; > 0) or broken (Av; < 0) double bonds,
Av, = number of formed (Av, > 0) or broken (Av, < 0) triple bonds.

Most part of conversions of valence states is realized through the so-called elementary
conversions of valence states, ECVS (ref.?). For instance, the conversion of atom
IX— — ;Xi should be interpreted as a successive step-by-step change of n and =
electrons from reaction partner and partially at the cost of proper n-electrons, through
different oxidation states of atom X (for example by a path [X— - —X— —
- —X= - =X= - /Yz - /X< - /X< . This 1.s in a .close an-alogy with t‘he
work of Ugi and coworkers®, who have introduced basis reaction matrices to describe
the most elementary mechanistic steps in an arbitrary chemical reaction.

0000 A 8000
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z oo
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} z ¥z 0021
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1 3332 q§/ 17
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FiG. 2

Graph representation of the adjacency matrix of elementary conversions of valence states of
atoms. Its 133 vertices form in four-dimensional space a grid composed of two blocs that are
assigned to x, = 0 and x4 = 1. The blocks are divided into planes A, B, C, D, and E, F.
G, respectively. Transitions between valence states are expressed by edges. Schematically, for better
illustration, the transitions between planes A—B—C—D and E—F—G are figured separately.
The transitions between planes B—E, C—F, D— G are possible, too .
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TABLE I

List of vectors of valence states of atoms (VS = sign of VC)

gvs noTx2x S norax [3E] norYox s norX2x
vo X 0000 vy X 4000 v68 Nx 0410 ve9 X 0001
1 -x 0100 » X 4100 69 M= 0510 100 -Xxa 0101
2 -X- 0200 36 -X- 4200 10;}3 0610 101 X8 0201
3 =X 0300 37 X 4300 71 %= 1110 102 s 0301
4 XX 0400 38 ¢ 4400 72 %= 1210 103 s 0401
5 X£ 0500 39 X 5000 73 M= 1310 104 = 0501
6 W& 0600 40 X~ 5100 T4 ¥« 1410 105 %= 1001
7 %€ 0700 41 X< 5200 5 ¥e 1510 106 ke« 1101
8 ¢ 0800 42 J¢ 5300 76 XY= 2110 107 ks 1201
9 W 0900 4 X 6000 77 X 2210 108 3= 1301
10 g 0w0O00 4 5 6100 7 M= 2310 109 e 1401
" % onoo 45 Y1 6200 79 %= 2410 110 Y= 2001
12 ¥ oroo 46 X 7000 80 Y= 3110 m -Is 2101
13 % 1000 1Y 7100 81 Y= 3210 ::i :;:z;g:
Wk 1100 48 I 8000 82 3= 3310 1 e 3001
15 <X- 1200 49 X= 0010 83 -XI= 4110 15 ’8'310;‘
16 -k 1300 50 0020 8¢ Y- 4210 16 s 3201
17 kK 1400 51 =X 0030 85 4= 5110 17 I 4001
18 X 1500 52 M 0040 86 -1 0120 18 Xs 4101
19 3 1600 53 I« 1010 87 X¢ 0220 119 <X« 5001
20 § 1700 54 «X= 1020 88 M 0320 120 =X 0011
21 ¥ 2000 55 2% 1030 89 X 0420 121 Jxe 0111
2 X 2100 56 Y= 2010 90 -%¢ 1120 122 Xa 0211
23 X- 2200 57 = 2020 91 ¢ 1220 123 e 0311
24 % 2300 58 XX 2030 92 a¢ 1320 124 ke 1011
25 X 2400 59 = 3010 93 XX 2120 :zzﬁ:;::
26 X 2500 60 X 3020 9 M¢ 2220 127 Xs 2011
271 X 2600 61 I= 4010 9%5 - 3120 128 X 2111
282 ¥ 3000 62 «J« 4020 9 =1&¢ 0130 129 uJa 3011
29 X 3100 63 J= 5010 97 <k 1130 130 3% 0021
3 -X- 3200 64 X 6010 98 «X¢ 0230 131 e 1021
31 X 3300 65 -x= 0110 132 Ja 0121
32 3 3400 66 >x= 0210

33 X 3500 67 3= 0310
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Valence state vectors of atoms describe bonding situations of atoms in molecules
of educts and products as well as bonding situations (sometimes formalized) of transi-
tion states and intermediates. (E.g., for a Sy, mechanism at a saturated carbon atom
formalization assumes a step via a trigonally bipyramidal (D,,) pentacoordinated
state”).

In order to construct the vectors of elementary conversions (VEC) we shall assume
that the elementary conversions of valence states correspond to 1) a transfer of one
and two electrons, respectively, and/or 2) a formation/breaking of one bond.

In Table II we have summarized all possible 22 VEC corresponding to elementary
heterolytic, homolytic, and redox chemical reactions®. The notation used is inter-
preted as follows:

The term nDy(nAy) denotes a break = dissociation (forming = association)
process (of course, with respect to the reference I atom) of n-tuple bond, and

the subscript X = N, E, R characterizes the nature of the second atom J, i.e.
whether it is a nucleophil (N), electrophil (E) or radical (R). A similar notation was
also used for the classification of redox reactions,

the term nDy(nA,) denotes an n-electron oxidation (reduction) of the reference
T atom. It is easy to see that VECs are not linearly independent; there may be obtained
many interrelationships among the elements listed in Table II. But nevertheless,
we can simply choose a set composed of four linearly independent VECs which
forms a basis set for all 22 VECs. An application of VECs to VVSs may be geo-
metrically visualized. For better contact with usual chemical thinking we have
constructed an graph which represents in a telling way the conversions of VVSs
by application of VECs listed in Table II. Its vertices/edges correspond to VVSs/VECs:
in particular, the elementary conversion (4a—b) is graphically realized by an line
starting (ending) at the vertex corresponding to v;(v;). Theoretically speaking, each
vertex is incident with at most 22 incoming and 22 outgoing edges, respectively.
These values are, of course, only upper bounds for the number of edges that are
attached to a vertex. Here, the following two restrictions are used:

1) Let us have a pair of VVS and VEC denoted by v = (v, v,, v3, v,) and Av =
= (Avy, Av,, Avy, Av,). The first restriction is that an VEC Av is applicable to the
VVS v only if the resulting VVS v’ = Av + v has all the entries nonnegative, i.e
v; + Av; 2 0, for i = 1, 2, 3, 4. For instance, we try to apply the VEC corresponding
to elementary conversion 1Dg, Av = (2, —1,0,0) (Table 1I), to the VVS v =
= (4,0, 1, 0) assigned to an atom X=. The resulting VVS v’ = (6, —1, 1, 0) has the
second entry negative; hence the 1D VEC is inapplicable to the VVS of X=. This is
obvious, since 1Dg simultaneously breaks a single bond and gains two free electrons,
but the VVS X= has no a single bond.

2) Let the VEC 4v be applicable to the VVS v from the standpoint of above
first restriction. The second restriction is that the resulting VVS v’/ = Av + v should
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TasLE 11
List of vectors of elementary conversions (VEC)

X i VEC for reference
No Notation Reaction scheme

Iatom
Heterolytic reactions
1 1Dy =) — 14 2, —1,0,0)
2 2Dy =y e 1 2,1,—1,0)
3 3D T PR 2,0,1,—1)
4 105 =] —— 147 0, —1,0,0)
5 2Dy I 0,1,—1,0)
6 3Dy Ly, — =3 0,0,1,—1)
7 14g vy —e 1) (—2,1,0,0)
8 24g 113 - =] (—2,—1,1,0)
9 34 Tf_\'~—-__| ——— =] (—2,0,—1,1)
10 14, ,'TT e (0, 1,0,0)
1 24y S S ©0,—1,1,0)
12 34y 147 —— 1=y 0,0,—1, 1)
Homolytic reactions
13 1Dy I+] — le+ J (1,—1,0,0)
14 2D, S R (1,1,—1,0)
s 3Dg Ly - =) (1,0,1,—1)
16 14, im'f} —— 1) (—1,1,0,0)
17 24q DG = (—1,—1,1,0)
18 34g G =y (=1,0,—1,1)
Redox reactions
19 1D, P g (—1,0,0,0)
20 2D, TP —— 147 (—2,0,0,0)
21 14, L (1,0,0,0)
i) 24 IQI — T +1J 2,0,0,0)
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be listed in Table 1I. This means nothing else than a “closure” of the proposed
set of VVSs listed in Table I under the application of permissible VECs listed in Ta-
ble II. In Fig. 3 we present, for better perception, an subgraph only for heterolytic
conversions of VS.

Distance between Vectors of Valence States

First, before the formulation of this concept, we formally summarize our considera-
tions from the previous section. Let ® be an oriented graph of elementary conversions,
its vertices are VVSs listed in Table I and they are linked by edges corresponding
to permissible VECs from Table II. The graph ® is connected, and furthermore,
each pair of its vertices can be traversed, at least, by one path composed of edges
belonging to ®. Now we are ready to defined the distance d(v,, v,) between two

510 Fi1G. 3

6007t~ 7 Subgraph of heterolytic elementary conver-
i;% l{, — sions of valence states of atoms projected
8006 onto a plane. Directions of edges express
13(%) their evaluation (e.g. horizontal lines cor-
1100 E respond to D, and A4,, vertical to 14y and
1200 1Dy, etc.)
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vertices assigned to VVSs v, and v,. respectively. The distance d(v,, v,) is deter-
mined as the length of a shortest path between the vertices corresponding to v,
and v,. Obviously, the distance satisfies d(v;,v,) = 0 (=0 only for v, = v,),
d(v,. v,) = d(v,,v;), and the “triangular inequality” d(v,, v;) < d(vy,Vv,) +
+ d(v,, v3). Hence the concept ,,distance” forms a metrics for the set of VVS listed
in Table 1.

The main purpose of this section is to formulate an algebraic approach to calculate
directly (without a relation to the graph ®) the distance between two VVSs. Let us
introduce the following basis set A = {Av,p, Av,p , Av,p , Avap b of VECs.
An arbitrary Av can be expressed as a linear combination of the above four VECs.
We shall study the conversion between two VVS v; and v; they are mutually related
by (4u—b). Hence, the vector of conversion Av;_. is expressed by

Avi_»[ = X3 Aleo + X, AVIDN + X3 AVZDN + X4 AV3DN N (5)

it produces a system of four linear equations. Solving this system we get

x; = —Avg,

X, = —Av, — Avy — Av,, (6)
X3 = —Avy — Av,,

X4 = —Av, .

In order to calculate the distance between v, and v, we have used the following
simple reasoning: The distance is the smallest number of elementary conversions,
their successive application converts the initial VVS v, into the final VVS v;. In the
course of each elementary conversion a bond is either broken or formed, and/or
free electrons are transferred. The number of broken/formed bonds is determined
by the coordinates x,, X3, x,. This number should be modified by a number of free
electrons transferred due to the possible redox processes. After simple but slightly
tedious algebra we arrive at

d(vi,v¢) = B + F(|x,| — 2B) + 2 + G(|x,| — 2B) mod, (|x,|), (7)
where
B = |xa| + |xs] + [xa], (8a)
_ [ x (forx>0),
F) = { 0 (forx =0), (&)
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1 (forx > 0),
0 (forx £0),

G(x) = { (8¢)

and + denotes the integer divide, and mod, () is the modulo- two function. The
first term in (7) expresses a number of broken/formed bonds. The second and third
terms correspond to the elementary redox conversions 2D,, 24, and 1D,, 14,.
Introducing (6) into (7) and (8a) we get the alternative formula for d(v;, v;),

d(vi,v¢) = B + F(|Av,| — 2B) + 2 + G(|Av,| — 2B) mod, (|Av,|), Q)

where B = |Av, + Avy + Avy| + |Avs + Avy| + |Av,|.

Example 1: Let us have v, = (6,1,0,0) and v; = (0, 1,3,0), then Av,. =
= (—6,0, 3, 0). Using relation (9) we get d(v;,v;) = 6 + 0 + 0, this result can be
simply checked on the graph.

Example 2: For v; = (0,1,0,0) and v; = (6, 1,0,0) the corresponding VEC
is Av;_; = (6,0,0,0), we get d(v;,v;) =0 + 3 + 0 = 3. Hence, the shortest path
between v; and v; is composed of three 2-electron reductions.

Chemical Distance and Conversion of Valence States of Atoms

The chemical distance between two molecular systems M and M’ of one EM is
determined as a metric between corresponding bond-electron (BE) matrices or ad-
jacency matrices''®, both this alternative definitions are simply related, the later
entity should be multiplied by factor 2 and then we get the former one. In general,
the chemical distance expresses a number of electrons that must be rearranged in the
course of reaction M — M'. The purpose of this section is to demonstrate that the che-
mical distance between an educt M and product M’ molecular system is an additive fun-
ction of chemical distances between pairs of atoms (A;, A}), where A, e Mand Aje M.
From this formulation of our task we see that the chemical distance implicitly
depends on the indexing of atoms in M and M’, respectively. Let us have an arbitrary
pair of atoms (A, A’), where A e M, A’e M/, and the atoms A and A’ are labeled
in both molecular systems by the same index. The VVSs of A and A’ will be denoted
by v and v’, respectively, and let the VEC Av be determined by v + 4v = v'. The
total number of free electrons, N, rearranged by the reaction M — M’ is

N = |Av,] . (10)

In similar way, a number of electrons shifted in the course of change of the valence
state is determined by the entity B, see (8a) and comment below (9). The value of B

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]



Mathematical Model of Organic Chemistry 1257

should be included twice, since during one elementary conversion, at least, none
or two electrons are shifted. This fact is counterbalanced by the observation that each
change of a valence state is running for two atoms. Hence, the total contribution
of the studied pair of atoms is

N =B. (11)

Finally, we have to determine the number of electrons that were shifted by a change
of bonding conditions between atoms A and A’.

Let A(2A’) be a set of such indices i that the atom A;(A}) is bounded with the atom
A(A’). Next, let B be a set of those indices i that the atoms A and A’ are bounded
with the atoms A, and Aj, respectively, and the order of these bonds is the same.
Using these sets we define the following set € = A U A — B, then a number
of changed neighbours of A and A’ is simply determined by ¢ = |€|, where ||
denotes the number of elements (cardina]ity) of the set €. Since the evaluated entity ¢
was already partially taken into account by the above entity B, the resulting contri-
bution is expressed by

N" = F(c — B), (12)

where F is the function (8b). This simple considerations can be repeated for all pairs
(A, A’) of atoms mutually assigned by the indexing, the chemical distance of a pair
of atoms A, A’ is determined by a relation

D(A,A) =N + N' + N". (13a)

The chemical distance D(M, M’) between molecular systems M and M’ is determined
as the sum of all contributions (10), (11), and (12), we get

DM, M’) = Ny + Nigy + Nioy (13b)

Nlot=lei’ N:on=ZNi’~ Nll,ot‘:ZN;l’ (13(—')
i= i=1

i=1

where the terms N;, N}, and N} are determined by (10), (11) and (12), respectively,
for actual atoms A;, A{. The individual terms from the right-hand side of (13) are
of the following simple chemical meaning: 1) The term N ,,, immediately corresponds
to changes of oxidation states of atoms. 2) The term N, expresses conversions
of valence states of atoms in the course of reaction M — M’ (e.g. its non-zero value
indicates an addition and/or elimination resp. rearrangement type of reaction).
(3) The term NY,, manifests a chemical change without the conversion of valence

states of some atoms (e.g. substitution reaction).
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Example 1: Substitution reaction

“H ‘H
| — = [ —
SHACTH + Ya-'al —— ‘H-iclal + HAC,

| |
H °H

The evaluation of D(M, M’) can be summarized as follows:

Atom N N’ N” >
el 0 0 2 2
2ql 0 0 2 2
3c 0 0 2 2
“H 0 0 0 0
SH 0 0 0 0
SH 0 0 0 0
H 0 0 2 2
3 0 0 8 8 = D(M, M)

The resulting chemical distance is D(M, M’) = 8, the non-zero value of N}, indicates
that the studied reaction is of a substitution type.

”

Note: For a Sy2 mechanism the distance D(M, M’) is non-zero also because N7,
n equation (13b) has a non-zero value.

Example 2: Addition reaction

olny3
5 _ _ s/
c=0! + H202H* ——> C
/ST - N2
O=H
Atom N N’ N” 3
1o 0 2 0 2
20 0 0 2 2
5c 0 2 0 2
3H 0 0 2 2
4H 0 0 0 0
> 0 4 4 8 == D(M, M)
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The non-zero value of N’ indicates the conversion of valence states of atoms, the
non-zero value of N” demonstrates that the given substitution can be interpreted
from the standpoint of some atoms, as a substitution reaction.

Example 3: Addition of Grignard reagents to carbonyl group

— . (+)
0(Mg—cl

_ /
R—C=0 + R!-—Mg—Cl — R—C

| I,
C H R
Atom N N’ A Z
(group)

C 0 2 0 2

[0) 2 1 0 3

H 0 0 0 0

Mg 0 1 0 1

Cl 0 0 0 0

R 0 0 0 0

R! 0 0 2 2

by 2 4 2 8 = D(M, M)

This reaction was presented mainly as an illustrative example with high complexity
of evaluation.

DISCUSSION AND CONCLUSION

We have demonstrated that the suggested formalism of valence states of atoms and
their interconversions represents simple and efficient algebraic tools to analyze
known as well as predictable reactions. Of course, it offers only an onesided view
on the chemical processes, the energy conditions whether a considered reaction
may run or not are strongly suppressed. By using the formalism we are able to con-
struct an exhaustive list of possible reaction paths going through the permissible
valence states of atoms that are listed separately for all types of contributing atoms.
In order to extract from these formally possible reaction paths those ones that are
physically and chemically relevant, a screening procedure through a “sieve” of che-
mical-reaction theories (formulated on different levels of sophistication) should be
used.

The main results of the present algebraic theory of valence states of atoms (from the

standpoint of our mathematical model of organic chemistry) are summarized as fol-
lows:

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]
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1) For a given type of atom the graph of conversions of valence states (GCVS)
is a-priori connected, i.e. an arbitrary valence state should be reached starting from
another possible valence state. In some special cases we have observed that the
constructed GCVS does not satisfy the above mentioned condition of connectivity.
This immediately implies that the known valence states of a given atom described
in literature should be enlarged by additional valence states and their interconver-
sions with former and/or added valence states. Hence, we believe, a systematic
analysis based on suggested algebraic approach is highly inspiring in looking for new
valence states of atoms and their interconversions.

2) GCVSs offer very serious and fruitful ideas in modelling the reaction mechanism
paths of new or rather complex chemical reactions (e.g. inorganic systems).

3) For computer-assisted organic syntheses working in retrosynthetic and syn-
thetic mode, respectively, for a given strategic reaction site the GCVS gives a com-
plete set of permissible precursors. In other words, the present approach combined
with GCVSs may be used by chemists for construction of multi-step organic
syntheses®.

4) In order to visualize our considerations with GCVSs assigned to different
atoms, we have coloured their vertices and edges by the following way (this is fully
equivalent with their evaluation by proper symbols or numbers): The vertices are
coloured by four different colours in dependence of their character — donor, ac-
ceptor, radical and neutral “insipid’’, respectively. In similar way, the four dif-
ferent colours are used for the colouring of edges that are corresponding to ele-
mentary conversions of valence states DyAy, DgAg, DrAg, and DyA,, respectively.
Then, using these coloured GCVSs we can immediately deduce the character of chan-
ges of reaction sites in substrates and the type of assigned reagents (e.g. Nu, E, R/,
hv, etc.) that are necessary for a realization of deduced conversions in substrates.
Moreover, the character of the first step in elementary conversions of valence states
determines, in general, the type of reaction mechanism.

The present algebraic approach is implemented in FORTRAN for ADT 4300
computer!®. In particular, it was used for the construction of complete list of con-
versions of valence states in form of an adjacency matrix.

The authors wish to express their appreciation for many useful and stimulating discussions with
Dr M. Sekanina, Department of Algebra and Geometry, Purkyné University, Brno. Our thank are
also due to Dr J. Svibik, Research Institute of Macromolecular Chemistry, Brno, for working
out the programs ECVS and BIBS and for carrying out calculations.
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